
Natural gas storage

S
torage plays an increasingly important role in matching
supply with demand in natural gas markets. However,
companies waste significant storage value, if optimal invest-
ment and operational decisions are solely based on the

seasonality pattern in gas prices: daily volatility creates significant addi-
tional value. Storage facility owners can reap this value using a recently
developed real option technique.

Optimisation
Optimal operation of a natural gas storage facility comes down to find-
ing the right time to withdraw and inject gas, depending on current
and expected gas prices1. In short, two characteristics of gas prices
allow a storage operator to maximise its value: predictable price move-
ments (seasonality) and unpredictable price movements (volatility).

Seasonality is generally considered the main source of gas price
profits – for example, buying in summer when gas is cheap and sell-
ing in winter when prices rise. However, completely relying on
expected price movements ignores the real option – or flexibility –
value of storage. For example, even though we observe high prices
today, prices may climb even higher in a few days. Similarly, we may
store some extra gas to be prepared for some (unexpected) further
profitable days of high prices. 

Why is storage optimisation a complex problem? The complexity
arises from a few factors:

● Seasonality in gas prices: this means that what would be an opti-
mal decision in December (under otherwise similar circumstances)
is different from what would be an optimal decision in May.

● Maximum and minimum volume of storage (and other operational
constraints): this means that what constitutes an optimal action
varies depending on whether storage is nearly full or nearly empty. 

● Non-normal price characteristics, such as mean reversion and time-
varying volatility and jumps : this factor makes expected price
movements and their magnitude vary from day to day.

● Long time horizons : due to yearly seasonality, at least a full year –
and preferably a few years – should be analysed.

A combination of these factors makes the problem a complex
compound real option problem, for which we need to use advanced
option techniques. 

For example, global energy consultancy Maycroft Consultancy
Services uses Monte Carlo simulations in its MayStore storage model,
since simulations do not impose a rigid structure on the spot prices
and allow for accurate decision-making for both short and long time
horizons. More specifically, MayStore is based on the recently devel-
oped least-squares Monte Carlo technique that combines flexible
Monte Carlo simulations with fast and accurate least-squares regres-
sions (Longstaff and Schwartz (2001)). 

The approach requires a relatively long computation time, but is
flexible and precise. Carriere (1996) set out the idea for it some years
ago, and it was later popularised by Longstaff and Schwartz (2001).
Since then, analysts have increasingly used it to value complex finan-
cial and physical options. We go on to describe the model and discuss
a case study.

Case description
The case centres on a realistic, but stylised example of a gas storage facil-
ity that is connected to the Zeebrugge gas hub in Belgium. Character-
istics of storage may vary in terms of minimum and maximum working
volumes, injection and withdrawal (production) rates and operational
costs. We look at a storage facility with a working volume of 8 million
gigajoules (GJ), an injection capacity of 60,000 GJ a day and a produc-
tion capacity of 250,000 GJ a day. This means it takes around 133 days
to fill the facility and 32 days to eject the total working volume. 

We take a horizon of two years, and assume that by the end of the
two years, the volume in storage should be at least as big as the start-
ing volume. For the starting volume, we assume half the working
volume. For simplicity, we do not include operational costs or trading
costs (the bid-ask spread), but the model allows for their inclusion. 

Our aim is to arrive at a strategy that consists of daily trading deci-
sions, which depend on actual price and volume levels and expecta-
tions about future levels. On average, the strategy should maximise
the total discounted revenue across all possible price scenarios over
a given time horizon, with an annual discount rate (r) of 5%2. If we
denote individual days by t, the terminal trading day by T, the stor-
age level at time t by Lt and the spot price by Pt, then our goal is to
maximise the following expected storage value:

(1)

Gas spot price characteristics
MayStore uses a pricing benchmark that determines how the storage
facility is operated. This could be a day-ahead or within-day spot price
at a physical gas hub or non-physical trading point. It is important that
the prices of the benchmark closely resemble the prices for which the
gas in the facility can be traded on a daily basis. 

We use Zeebrugge day-ahead prices, since  Zeebrugge is the most
liquid hub on the European continent. We use Platt’s day-ahead
prices, measured in €/GJ from March 2000 till August 22, 2003
(figure 1). Typical gas characteristics become immediately apparent,
including high volatility, seasonality and a tendency – after extreme
prices – to revert to ‘normal’ price levels (mean reversion).

Prices are available on the usual trading days – 252 days per full
year, on average – and we assume injections and withdrawals only take
place on these days. The basis simulation model in MayStore is the
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Here we describe the optimal operation and valuation of gas storage based on a real
option methodology. Using Zeebrugge gas prices as a practical example, Cyriel de
Jong and Kasper Walet clarify the optionality in gas storage, analyse its valuation
and discuss hedging strategies to secure part of the storage value

To store or not to store

1 In this article we describe the valuation of natural gas storage. Storage of other commodities, such
as oil and liquefied natural gas, may be valued with the same approach, depending on the
availability of reasonably liquid spot markets and seasonality and volatility in prices

2 At the end of the article we discuss hedging opportunities to secure (part of) the storage value.
Depending on the effectiveness of hedging, we may employ a discount rate close to the risk-free rate
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mean-reverting model that has proved successful for oil and gas
(Schwartz (1997)). However, more advanced models are often desir-
bale – for example, to allow for jumps, time-varying seasonal volatil-
ity and time-varying autoregressive volatility (Garch). Such price
modelling flexibility is one of the strengths of the least-squares Monte
Carlo approach. Here we follow the basic mean-reverting model, for
ease of explanation. It assumes the following form:

(2)

In this model, there are two crucial parameters: the mean-rever-
sion rate α, which determines how quickly prices revert from unusual
to normal levels; and the volatility σ, which determines the magni-
tude of the unexpected price fluctuations. We also estimate a seasonal
function to capture readily observable seasonality. Although this func-
tion will later be replaced by the (forward-looking) seasonality
derived from the forward market curve, we need to improve the esti-
mates of mean-reversion and volatility. The highest prices are
observed in winter months, the lowest in summer, with a maximum
difference of 1.12 €/GJ. 

The mean-reversion rate of 0.0678 means the half-life is 3.88 –
meaning the spot price takes around four trading days to revert from
actual levels halfway back to its expected level as determined by the
seasonal pattern. The residuals of the spot price process (εt in equation
2) have a daily standard deviation of 8.4%, which equals a yearly volatil-
ity of 133%. This confirms that volatility levels of natural gas spot prices
are quite high in comparison to those of most other commodities –
electricity being one exception – meaning gas storage has significant
value in terms of options. 

Since the model is calibrated with historical data, it lacks the most
recent trading information. As a result, we re-align the spot price
model to market forward or futures prices. If markets are efficient
and risk premiums negligible, the forward curve represents the aver-
age expectation of market participants as to future spot levels. Platt’s
reported forward prices on August 22, 2003 for the next three
months, as well as eight quarters ahead (see table). 

We replace our historically calibrated seasonal function with a
seasonal pattern that matches the forward mid prices. To obtain greater
precision, we decompose the quarterly forwards in three monthly
forwards based on historical monthly averages. We can make a simi-
lar adjustment to the volatility pattern, which may be aligned to
implied volatilities derived from natural gas options.

Optimal strategy
We start with an optimal strategy that only uses the forward market,
thereby profiting from the predictable seasonality pattern in gas
prices. The reader may verify that an optimal strategy consists of sell-
ing as much gas as possible in the two most expensive quarters (Q1
2004 and Q1 2005) and buying enough gas in the cheaper periods.
This ensures the storage is full – that is, contains 8 million GJ – at
the start of the most expensive quarters and attains the required mini-
mum level of 4,000 GJ two years from now. The strategy yields a
total value of  €15.9 million.

Although this approach is intuitive, it ignores an important char-
acteristic of gas storage: the flexibility to react to changing market
conditions. To translate the unexpected price movements into prof-
its, we need a real option model. To understand how the real option
model works, we start with a simple example. 

Suppose our storage is contains 5 million GJ and we observe a
spot price of 3 €/GJ today and have three choices: do nothing, inject
0.06 million GJ or withdraw 0.25 million GJ, as we assume in our
example. Each choice will lead to immediate cashflows and a value
of the storage next period as follows:

( ) ( )1 1ln ln ln where ~ 0,1
t t t t t
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● Do nothing: Value = Value of having 5 million GJ next period
● Inject value = Value of having 5.06 million GJ next period –

€180,000
● Withdraw value = Value of having 4.75 million GJ next period +

€750,000

For example, we will choose to inject if the extra volume (0.06
million GJ) is worth more than €180,000, and choose to withdraw
when the storage decline (0.25 million GJ) is worth less than €750,000.
More specifically, in each time step we calculate three values, ignoring
discounting, for each of the choices above and choose the maximum:
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Storage plays a vital role in competitive natural gas markets, because
the average variability in the consumption of natural gas is much
greater than the average variability in production. Historically, natural
gas storage was used for two main functions. 

First, it provides local distribution companies with adequate
supply during periods of heavy demand by supplementing pipeline
capacity and serving as back-up supply in case of an interruption in
wellhead production. 

Second, storage enables greater system efficiency: instead of
satisfying winter demand by adding new production facilities, the
industry can maintain production at a much more constant level
throughout the year. 

In the liberalisation process, the natural gas storage service is
unbundled from the sales and transportation services, meaning stor-
age is offered as a distinct, separately charged service. In combina-
tion with the development of active spot and futures markets, it
becomes possible to adjust trading decisions to price conditions. 

In other words, buyers and sellers of natural gas have the possibil-
ity to use storage capacity to take advantages of the volatility in prices.

The role of storage

Bid Ask Mid
September 2003 2.81 2.84 2.83
October 2003 2.79 2.82 2.81
November 2003 3.38 3.41 3.40
Q4, 2003 3.27 3.30 3.29
Q1, 2004 3.73 3.76 3.75
Q2, 2004 2.73 2.79 2.76
Q3, 2004 2.79 2.86 2.83
Q4, 2004 3.36 3.39 3.38
Q1, 2005 3.73 3.75 3.74
Q2, 2005 2.66 2.73 2.70
Q3, 2005 2.73 2.79 2.76

Source: Platt’s, Moneyline

Natural gas forward prices in € per gigajoule
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Natural gas storage

In equations 3 to 6, IR and WR are the injection and withdrawal
rates. VN, VI and VW are the storage values if we choose to do noth-
ing, inject and withdraw respectively.

The difficulty in making this decision is that we do not know the
next period’s value, since it depends on future price levels. The only
exception is the last trading day of the current evaluation horizon,
when our decision should ensure we reach the level of 4 million GJ.
For the other days, we can only calculate an estimate of future stor-
age value by simulating many possible price paths. This is what the
least-squares Monte Carlo approach entails: simulating possible price
paths, starting with a decision on the last day, and then working back-
wards to derive an optimal strategy that maximises total value. The
estimates of future storage value are based on least-squares regres-
sions from a cross-section of the prices across all simulations. The fact
that the least-squares regressions are precise and executed very effi-
ciently is the strength of the least-squares Monte Carlo method.  

Next we generate a large number of simulations with the spot
price process. We then work backwards and perform the aforemen-
tioned regressions (for VN, VI and VW ) on each trading day and
for each possible volume level. The regressions provide us with an
estimate of the storage value if we do nothing, inject or withdraw.
We can use this information to derive the optimal strategy for any
price path. 

Most importantly, for general day-to-day trading, Maycroft’s
MayStore determines an optimal strategy for today’s market prices.
With the current storage level known, MayStore advises withdraw-
ing or injecting above and below certain price levels. Figure 2 depicts
this option exercise boundary.

Strategy analysis
To assess the effect of the decision rules on profitability, cashflows
and storage levels over time, we generate a new set of price simula-
tions3 and determine the optimal strategy along each price path. We
thus obtain a distribution of storage value, storage volume and cash
flows. Using 1,000 simulations, the average storage value for the next
two years equals just over €29.4 million: nearly twice the ‘lock-in’
value. Although there is quite some dispersion of values across the
simulations, the value is below the lock-in value in only three
instances. (See figure 3.) 

It can be inconvenient for schedulers not to know the volume
levels in advance, as this makes it difficult to contract pipeline capac-
ity forward. However, the model generates a distribution of volume
levels over time. They are not completely random – they follow the
seasonality pattern on average. Schedulers can use these volumetric
statistics to project the need for pipeline capacity and so can easily
identify constraints in pipeline capacity. For example, traders will most

probably buy natural gas in the first 50 days – between the end of
August and the end of October – so schedulers may contract trans-
port (inflow) capacity in advance for this period. Schedulers can feed
this information back into the model by adapting injection and with-
drawal capacities in constrained periods. (See figure 4.) 

Sensitivity analysis
Our case discussed one particular storage facility based on one set of
historical prices and forward levels. It is interesting to analyse how
sensitive the outcomes are with regard to variations in the spot model
parameters and storage characteristics. 

We start with adaptations to the spot model: the mean-reversion
rate, volatility and seasonality. Without any mean reversion, price
changes would be completely unpredictable, apart from their season-
ality. In such a situation, locking in prices is the best strategy. Hence,
volatility alone is not enough to create option value for storage: we
also need mean reversion4. This becomes clear when we vary the
mean-reversion rate between 0 and 0.10 (see figure 5). Without
mean reversion, the asset contains no option value: its value equals
the value that can be readily locked in using the forward curve.
Slightly increasing the mean-reversion level quickly generates extra
profits, but increasing mean reversion (above approximately 0.05)
introduces a counter-effect: a rate that is too high dampens out price
fluctuations very quickly, and thus reduces the width of ‘unexpected
cycles’. Above this threshold, therefore, the real option value starts
to diminish progressively.  

The relationship between volatility and real option value is close
to linear. In our example, each percentage point in yearly volatility
(daily volatility multiplied by the square root of 252) yields around
1% in additional option value. Although volatility has a positive effect
on asset value, we should bear in mind that actual payouts become
more uncertain as a result, as do expected volume levels.

Storage facilities have varying levels of operational flexibility,
which are best reflected by the speed of injection and withdrawal.
The higher the level of flexibility, the more quickly the facility can
respond to both expected price cycles (due to seasonality) and unex-
pected price cycles (due to mean reversion and volatility). If we cut
flexibility by a factor of two, and keep the injection/withdrawal ratio
constant – that is, 30,000 GJ injection and 125,000 GJ withdrawal
– asset value drops by 38%. We can attribute this drop to a reduction
due to lower seasonality profits (22%) and a reduction due to lower
real option value (16%). A flexibility twice as high as the base case –
that is, 120,000 GJ injection and 500,000 GJ withdrawal – only has
a minor impact on the seasonality value (+2%), but a considerable
impact on the real option value (+57%). 

So, above a certain level, we do not need additional flexibility to

4 This is different from standard call and put options, because a storage facility exploits ‘cycles’ in gas
prices to buy low and sell high and not price fluctuations per se. Cycles can be produced either by
predictable movements (seasonality) or unpredictable movements (volatility plus mean reversion)
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Figure 1: Zeebrugge day ahead 
natural gas spot prices 

0
2

6

10

14

18

13
.7

5
17

.9
2

22
.0

9
26

.2
6

30
.4

4
34

.6
1

38
.7

8
42

.9
5

Value (millions of €)

Fr
eq

u
en

cy
 (

%
)

Figure 3: Distribution of real 
option value

–300
–250
–200
–150
–100
–50

0
50

100

1.
36

1.
61

1.
86

2.
11

2.
37

2.
62

2.
87

3.
12

3.
37

3.
62

3.
87

4.
12

4.
37

Spot price (€/GJ)

A
ct

io
n 

('0
00

 G
J)

Figure 2: Today’s optimal natural 
gas storage decision

Source: Platt’s, Moneyline Source: authors Source: authors

3 We generate a new set of simulations to perform an out-of-sample assessment, thereby avoiding
any in-sample bias.This is one of the advantages compared to a tree-building approach, where we
can make no distinction between in- and out-of-sample 
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exploit the forward curve much further, since one month – the small-
est forward period in our example – suffices to fill or empty the facil-
ity completely. Yet additional flexibility allows for a quicker reaction on
shorter-lived unexpected price fluctuations at all levels of flexibility. 

Hedging
When we follow a strategy on the spot market, we do not know the
value of the storage facility in advance, which may fluctuate over time.
From a risk-return point of view, it is often desirable to minimise
these fluctuations. This is possible by trading gas derivative contracts
such as forwards, futures and options. We can find the optimal
contracts by calculating the Greeks of the asset, which are its sensi-
tivities to changes in the underlying market prices. For example, the
model calculates the delta of the asset towards changes in each of the
forward prices. The delta tells a trader which positions neutralise the
portfolio’s value (storage plus contracts) to small changes in one of
the forward contract prices. 

The deltas in figure 6 are directly related to the expected storage
development in figure 4. In periods where we would expect gas to
be bought (September to December 2003), the deltas are most nega-
tive: higher forward prices make expected purchase prices more
expensive and thus reduce storage value. Similarly, in periods where
we would expect gas to be sold – notably the first quarter of 2004
and 2005, which have the highest expected price levels – higher
forward prices enhance the storage value.

Mathematically, the deltas represent the first-order derivative of
the storage value with respect to the underlying forward. This means
the storage value is expected to decrease by around €21,000 (2.1
million x 0.01) in response to an increase of the October 2003
forward by €0.01. To make the portfolio value independent to small
changes in this forward contract, which has a current value of €2.81,

a trader should go long in 0.75 million (2.1 million/2.81) GJ Octo-
ber 2003 contracts.  

Conclusion 
Storage facilities will play an increasingly important role in liberalised
natural gas markets in matching time-varying demand to supply. For
optimal investment decisions, we must accurately determine the value
of storage, taking into account both the intrinsic value (due to season-
ality) and the option or flexibility value (due to volatility). Accurate valu-
ation based on the flexible least-squares Monte Carlo approach may
reduce investment uncertainty. Such increased certainty, combined with
the substantial real option value – as we might find find in a Zeebrugge
storage facility – may trigger even more investments in this area. EPRM
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