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Executive summary

This paper proposes a new model for computing Value-at-Risk forecasts. The
model is fully non-parametric and easy to implement. Further, it incorporates
information about the market�s perceived uncertainty about the future. The
forward looking information is obtained from the option market via CBOEs
implied volatility index VIX. Using SP500 data from 1990-2010 we �nd that
the use of option implied volatility compares favorably to GARCH type models
in terms of forecast performance. By comparing the model primarily used in
the banking sector to our new model, we �nd that a �nancial institution using
our model has on average a lower market induced capital requirement (MCR).
However, during the time period leading up to the �nancial crises our model
gives a 40% higher MCR.

Keywords: Risk management, Forecasting, Value-at-Risk, Implied volatility
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1 Introduction

One of the perceived culprits behind the �nancial crisis is the risk management
tools used by �nancial institutions, particularly the Value-at-Risk (VaR) mea-
sure. While some critique is well justi�ed such as VaR not being sub additive for
non-elliptical return distributions (Szegö, 2002) there is some confusion in me-
dia�s critique. One such example is Joe Nocera�s column (Nocera, 2009) in The
New York Times where drawbacks regarding a particular implementation of the
VaR measure are presented as a failure inherent to the VaR method itself. The
two most prevalent examples are the normality assumption of portfolio returns
and the fact that VaR relies on history repeating itself. Both of these critiques
actually only apply to certain implementations of VaR.
It is the purpose of this paper to suggest a VaR model that uses future look-

ing information and further does not rely on any speci�c assumption regarding
the return distribution. We achieve this by utilizing the information content
about market participants�perceived uncertainty of the future coupled with the
�ltered historical simulation method of Hull and White (1998). The necessary
views about the future are available from today�s option prices which impor-
tantly have become easily and freely available since CBOE�s construction of the
implied volatility index VIX, based on SP500 options. The major bene�ts of
the model is that it is completely non-parametric, forward looking and utilizing
what should be the best variance forecast that exists. Also it is robust, under
some assumptions, to the di¤erence in implied volatility under the risk-neutral
and physical probability measure which is otherwise one of the major problems
when using option implied variance forecasts.
The rest of this paper is organized as follows, section 2 gives an overview of

VaR and presents the new model, section 3 displays the data and explains the
estimation, section 4 introduces the VaR evaluation tests, section 5 gives the
results and section 6 concludes.

2 Historical simulation of Value at Risk

The Value at Risk litterature is vast and rapidly growing. Because of this the
description here will by necessity be narrow and only focus on what is most
often called historical simulation1 (HS) since the model proposed in this paper
belongs to this class of models. For a general overview of the �eld the reader is
referred to the textbooks by Dowd (2005) and Jorion (2006).
Consider a � day return yt;t�� = ln(pt=pt��) with pt being the price of a

�nancial asset or a portfolio of such assets with time index t ranging from 1
(the beginning of the sample) to T � � denoting the end of the sample period.
Value at Risk is the maximum loss expected to incur over a certain time period

1There is yet a lack of a common terminology in the VaR area, this article follows the
terminology of Dowd (2005).
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(h) with a given probability q. Equivalently, it can be stated that the loss will
be less than V aR(q; h) dollars, (1� q) � 100% of the time. Statistically

V aRt (q; h) = F
�1
t+h (q) j
t (1)

where F�1t+h is the h-step conditional forecast of the inverse cumulative distrib-
ution function (cdf) of yt;t�� and 
t is the information set up to and including
time t information. From the de�nition it follows that V aR can simply be cal-
culated as a percentile from the historical return distribution, a method known
as historical simulation (HS). Historical simulation is the most used (Perignon
and Smith, 2010) and perhaps also the easiest method to understand and to
implement for calculating VaR forecasts. HS may also appear very �exible since
it does not assume a particular data generating process, while it in fact relies
on the very strong assumption that returns are independently and identically
distributed (iid).

2.1 Filtered historical simulation

It is now, and has been for some time, very well documented that �nancial re-
turns exhibit volatility clustering. Early references include Mandelbrot (1963)
and Fama (1965). To formalize, volatility clustering means that the variance
parameter that describes the return distribution varies over time. Several meth-
ods exist that try to augment heteroskedasticity to HS, most well known are
probably Hull and White (1998) and Boudoukh et al (1998). Both of these meth-
ods (or at least the particular implementation of the method in the Hull and
White case) require some parametric assumptions, thereby somewhat lessening
the appeal for a user that wants a fully non-parametric method.
As previously stated historical simulation requires that the distribution of

yt;t�� is independent and identical over time. Hull and White (1998) suggest
to transform yt;t�� as y�t;t�� =

yt;t��
�̂t;t��

�̂T;T�� with �̂t;t�� the �ltered volatility
from time t� � to t given T � � information and �̂T;T�� being a volatility fore-
cast, again using T � � information. This approach changes the iid assumption
from applying to yt;t�� to the much more plausible assumption of

yt;t��
�̂t;t��

being
iid. However Hull and White suggest to get the �̂t;t�� estimates from the ex-
ponentially weighted moving average model (EWMA), making their approach
only semi-parametric.2 Further the EWMA model, as any parametric model,
will according to traditional market e¢ ciency arguments only use a subset of
the information available to the market participants in forming the variance
forecasts.

2.2 Option implied variance forecasts

The variance forecast literature has a tradition of trying to use the information
about future variance contained in the price of options. The early literature,
such as Canina and Figlewski (1993), �nd that option implied variance predict

2Barone-Adesi and Giannopoulos (2001) instead use a GARCH model.
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variance poorly. There are at least three reasons for this i) the forecast is of
the risk-neutral and not the physical variance ii) the forecast rely on a speci�c
option pricing model iii) the forecast was compared to a noisy proxy of the ex
post volatility.
Since the work of Britten-Jones and Neuberger (2000) it is now possible

to extract a variance forecast assuming only absence of arbitrage and not any
particular option pricing model. Further with the realized volatility literature
(Andersen and Bollerslev, 1998) it is now possible to construct ex post measures
of volatility that allows for proper evaluation of volatility forecast models. The
�rst reason for the poor performance remains however, since, at least for index
options, the risk neutral volatility is often documented to be more than 50%
higher than the realized volatility, see eg Bollerslev et al. (2011). The di¤erence
between the risk-neutral and physical variance can be thought of as a variance
risk premium. That is, if you could own volatility3 as an asset, you would
on average earn a large negative return as documented in eg Mixon (2007) as
well as Carr and Wu (2009). A negative volatility risk premium corresponds to
the risk-neutral variance being higher than the variance under the real world
probability measure. In the next section we will propose a method to calculate
VaR that incorporates the forward looking variance and that is also robust to
the presence of a variance risk premium.

2.3 The Historical simulation VIX model

The theoretically best solution for estimating the �ltered volatility �̂t;t�� would
be to use high frequency data and calculate the so called realized variance (An-
dersen and Bollerslev, 1998), since the realized variance converges to the true
latent variance �t;t�1 as the sample frequency tends to in�nity. This method
was very recently suggested in Andersen et al. (2012). In practice however,
data availability will often mean that only one observation is available for each
variance that is to be estimated, in this case the realized variance is still unbi-
ased but very noisy. Further, some kind of parametric model would have to be
used to forecast �̂T;T��:
In this paper we suggest to use the option implied volatility that is freely

available from CBOE�s volatility index VIX. We call this new model the His-
torical simulation VIX model (HS-VIX). The "new" VIX introduced in 2003 is
based on SP 500 options and uses the model free method of Britten-Jones and
Neuberger (2000) to calculate the implied volatility. That is, �̂t;t�� is "esti-
mated" by using the close of the VIX index on day t� � denoted by V IXt+22;t
since the VIX is a 22 trading day forecast4 and �̂T;T�� is forecasted by using
the close of the VIX on day T � � (the last day in the sample) so that we get

y�t;t�� = yt;t��
V IXT+22;T
V IXt+22;t

(2)

3 Indeed you can, futures and options exist with variance as the underlying asset.
4The subscript t in used instead of t�� since we use the close value and not the open value

of the VIX on day t� �:
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If the return series yt;t�� has a non-zero mean, rescaling with the volatility
implies a dependence between the mean and the volatility similar to a GARCH
in mean e¤ect. For an asset with primarily systematic risk such as the SP500
this is probably desirable. However this e¤ect can be removed by subtracting
the mean from yt;t�� before the scaling and then it can be added back.
There are several advantages with the choice of using the VIX index, but

also some drawbacks. The major bene�ts is that the method is completely
non-parametric, forward looking and utilizing what should be the best variance
forecast that exists. The fact that the model is non-parametric should make
it much more robust to varying economic conditions where a parametric model
may have to deal with structural breaks (eg a GARCH model should not be used
when there is a shift in the unconditional variance). That is, a non-parametric
model is basically immune to the Lucas (1976) critique.
It should also be mentioned that it is very easy to calculate expected short-

fall (ES) (conditional VaR) by simply computing the average of the observations
that fall below the VaR threshold for all methods based on historical simula-
tion. The reason ES is not computed in this paper is that the methodology for
evaluating ES forecasts is still not very developed.
The drawbacks with the model is that the variance forecast includes a vari-

ance risk premium, has a horizon of 22 days and is only valid for the SP500
which may di¤er substantially from the portfolio the user wants to compute his
VaR. We will now look at each of the three drawbacks in greater detail.

2.3.1 The variance risk premium

If the variance risk premium is proportional over time to the VIX level, the real
world volatility forecast can be written as c � V IX with c being a constant of
unknown magnitude. Reassuringly we get

y�t;t�� � yt;t��
V IXT+22;T
V IXt+22;t

= yt;t��
c � V IX

T+22;T

c � V IXt+22;t
(3)

so the method is actually immune to a variance risk premium of unknown size as
long as it is proportional to the VIX level. Bollerslev et al. (2011) �nd evidence
of time variation in the variance risk premium which makes our assumption of
a proportional variance risk premium more plausible than assuming a constant
variance risk premium.

2.3.2 The forecast horizon

As can be seen in equation (2) a � day return is rescaled by a 22 day volatility
which introduces a potential problem for all � 6= 22: If eg a one day volatility
can be written as a constant times the 22 day volatility our method will not be
a¤ected by using the "wrong" forecast horizon. This will be the case if the VIX
index follows a random walk. There is however very strong empirical evidence
(the whole GARCH and Stochastic volatility literature) that variance is mean
reverting. If mean reverting, the 1 day variance forecast will be more than
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1/22 of the 22 days variance forecast when the variance is higher than its mean
reversion level and similarly lower when the variance is below its mean reversion
level. So the deviations in forecast horizon will probably have some e¤ect that
we investigate empirically by making VaR forecasts from 1 day, 10 days and 22
days returns.
There are at least two possible solutions to the mismatch between the VIX

forecast horizon and the desired VaR forecast horizon. If the user has access to
option data an implied variance forecast of the desired length can of course be
constructed, this would completely eliminate the problem and keep the method
non-parametric. The second solution is to use some parametric assumption
about the volatility process and adjust the forecast accordingly. Both of these
approaches are left for future research.

2.3.3 Other assets than SP500

Finally if we are interested in the VaR of some other asset than the SP500, the
method once again works if the standard deviation of the other asset can be
written as a constant times the level of the VIX. If one is not willing to make
this assumption other volatility indexes exists, both domestic and international,
which may be more suitable for a speci�c portfolio. It exists today implied
volatility indices for the major equity indices not only in the US but also in
eg Germany, the UK, France, Switzerland, Hong Kong and India. In addition
to this implied volatility indices for commodities such as oil, gold and silver
also exist. For an exhaustive listing of available volatility indices the reader is
referred to table 1 in Andersen et al. (2011). Once again, if the user of the
VaR forecast has access to relevant option data, the volatility forecast can be
constructed from that data.
In addition to this, Birtoiu and Dragu (2011) use the method proposed in

this paper on real pro�t and loss data from one American and three European
banks during January 2007 through December 2010 and �nd that the HS-VIX
model performs well. This result is encouraging although the sample period in
Birtoiu and Dragu (2011) is admittedly short.

3 Data and estimation

The VIX index is available from 2 January, 1990 which is also the start of our
sample period and the end date is August 30, 2010. The VIX index, which is
constructed by CBOE, measures the square-root of the risk neutral expected
variance of the S&P 500 index by using S&P 500 index options with a maturity
of one month (22 trading days)5 . The VIX data is combined with returns from
the SP500 index.

[Insert Table 1 about here.]

5Details about the calculations are found at http://www.cboe.com/micro/vix/vixwhite.pdf
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As can be seen from table 1 the annual standard deviation of the SP500
index is lower than the average level of the VIX index. This is consistent with
a negative variance risk premium, although the di¤erence is smaller than in
Bollerslev et al. (2011) who uses the same data series. Their data however
ends in 2004. Further there is persistence in the squared SP500 returns which
is consistent with volatility clustering (ARCH e¤ects).
Our aim is not to conduct a horse race between many existing models. In-

stead we estimate three di¤erent models on the SP500 data with three di¤erent
forecast horizons. The three models are a standard historical simulation model
(HS), a GARCH historical simulation model (HS-GARCH), and the model pro-
posed in this paper called HS-VIX. The three models are selected so that we
�rst of all can gauge if there is an improvement to be had from introducing
volatility updating into historical simulation. This is done by comparing the
HS model and the HS-GARCH model. Further we investigate if there is an
additional improvement by using the variance forecast from the VIX index by
comparing the HS-GARCH model and the HS-VIX model. The three forecasts
horizons are 1 day, 10 days and 22 days.
The full sample, including 5,207 daily price observations, is divided into

an estimation sample and a forecast sample. The estimation sample is set
to the �rst 500 daily observations for the 1 day forecast horizon, 1,000 daily
observations for the 10 days forecast horizon and 2,500 daily observations for
the 22 days forecast horizon. The increase in the number of daily observations for
the longer forecast horizons is necessary since the empirical return distribution
that is used to make the VaR forecasts are constructed from returns equal to
the forecast horizon, ie a 22 days VaR forecast is calculated as a one step ahead
forecast from the empirical distribution of 22 days returns. The forecasts are
calculated using a rolling scheme so that the size of the estimation sample is
held constant and the start point and end point is moved forward with a number
of days equal to the forecast horizon after each forecast is made.
The GARCH model is the standard model of Bollerslev (1986) given by

yt+�;t = �+ z
t+�;t�t+�;t

�2t+�;t = ! + �"2t;t�� + ��
2
t;t�� (4)

with "t = zt�t and zt�IID N(0; 1):

The GARCH model is estimated on the same rolling windows as described above
with the three di¤erent frequencies � = f1; 10; 22g:
This method gives 4,707 daily forecasts, 421 ten days forecasts and 124

twenty-two days forecasts. Each forecast is made for the VaR levels 1%, 2%,
3%, 4% and 5%.

4 Backtesting VaR models

Our selection of methods for evaluating VaR models is based in part on the
popularity of the tests and in part on their performance in the simulation study

8



conducted in Berkowitz et al. (2009). We brie�y summarize the tests below
and refer to Berkowitz et al. (2009) for a more detailed description. De�ne an
indicator series, It; according to:

It =

�
1 if yt+h;t < V aRt(q; �)
0 Otherwise

(5)

meaning that VaR exceptions are coded as 1 and non-exceptions as zero. As
shown in Berkowitz et al. (2009) VaR evaluation tests can be presented in a
uni�ed framework by noticing that a correctly speci�ed VaR model implies

E[It � qj
t�1] = 0 (6)

with 
t�1 being the information set available at time t�1, note that the in-
formation set is not limited to information in just the indicator series. The three
popular tests proposed in Christo¤ersen (1998) that check for a correct num-
ber of exceptions (LRUC), independence of exceptions (LRind) and jointly tests
for a correct number of independent exceptions (LRcc) �t into the framework
above when �rst order Markov dependence is used as the alternative hypothesis.
From (6) it follows that E[(It � q)(It�k)] = 0 for all k > 0. This means that all
autocorrelations of the mean adjusted indicator series should be equal to zero.
Berkowitz et al. (2009) suggest to test this with a Ljung-Box test which we label
LB1 and LB5 for one and �ve lags respectively. Berkowitz et al. (2009) also
suggest a test based on the Caviar model of Engle and Manganelli (2004) that
includes the VaR estimates from the model being evaluated. The test consists
of estimating the unrestricted log likelihood from the logit model

It = �+ �1It�1 + �2V aRt + ut

and comparing it to the restricted likelihood by setting �1 = �2 = 0 and
e�=(1+e�) = q: This test, which we will call the Caviar test, was generally found
to have the best power properties in the simulation study in Berkowitz et al.
(2009). Because of the size distortions in the tests documented in Berkowitz et
al. (2009) we report p-values from the tests based on the simulated �nite sample
distribution. We follow the method of Dufour (2006) and use 5,000 simulations.

5 Results

This section will look at the economic consequences the di¤erent models will
have in terms of capital requirements according to the Basel II regulations.
Also it presents the results from the statistical backtesting of the models.

5.1 Economic results

From visual inspection of the top panel of �gure 1 it is apparent that HS is
very slow to respond to changes in returns and because of this produces VaR
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estimates that are constant for prolonged periods of time. For example, on the
12 September, 2008, the Friday just before Lehman brothers �led for Chapter
11 the following Monday, the one day ahead VaR forecast from the HS-VIX
and HS-GARCH were 3.50% and 4.07%. Five days later they had increased to
4.98% and 7.60%. In contrast to this, the VaR from HS is 3.02% the Friday
before Lehman Brothers and almost unchanged at 3.20% �ve days later.
Both the VIX and GARCH �ltered HS respond in a similar fashion to

changes in volatility but generally the most extreme movements are created
by the HS-GARCH model. The average VaR for the 1 day forecast horizon is
-2.79 for the HS model, -2.59 for HS-GARCH and -2.58 for HS-VIX.

[Insert �gure 1 about here.]

The market induced capital requirements (MCR) for a bank using the in-
ternal models approach under Basel II is based on the 10 days ahead 99% VaR
forecast (or the average of the last 60 days if this is higher) times a scaling factor
that depends on the number of exceptions (e) the bank�s VaR model had when
backtested on 250 days one step ahead 99% VaR forecasts (BIS, 1996). The
scaling factor ranges from 3 for a maximum of four exceptions (a correct model
will on average have 2.5 exceptions) to 4 for a model that has produced 10 or
more exceptions. Speci�cally the scaling factor St it is determined by

St =
3 if e � 4

3 + 0:2(e� 4) if 5 � e � 9
4 if e � 10

(7)

and the capital requirement by

MCRt = Stmax(V aRt(0:01; 10);
1

60

60P
i=0

V aRt�i(0:01; 10)) (8)

which is plotted in �gure 2 for the di¤erent models using 10 days-ahead
non-overlapping forecasts.

[Insert �gure 2 about here.]

Figure 2 displays the MCR over the sample period for a constant position
of 100$ in the SP500 index using the three di¤erent models. For the whole
sample period the MCRs is 28.61$ for the HS, 24.07$ for the HS-VIX and 25.50$
for the HS-GARCH. From �gure 1 we saw that the HS-VIX and HS-GARCH
models reacted much faster in increasing the VaR after the Lehman Brothers
�led for chapter 11. However the real purpose of the HS-VIX model is the use
of forward looking information, so can we see an increase in the MCR already
before Lehman �les for chapter 11?
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In �gure 2, observation 373 is the �rst observation after Lehman Brothers�s
bankruptcy but we can see that already from observation 336 ( April 10, 2007)
the MCR from the HS-VIX model starts to be consistently higher than that
of the HS and HS-GARCH models.6 The average MCR for the HS-VIX model
is 21.99$ from April 10, 2007 until September 11, 2008 (from the observed
divergence until just before the Lehman bankruptcy), 15.67$ for the HS model
and for the HS-GARCH model the MCR is 16.09$. This shows that a �nancial
institution that would have based their market induced capital requirements on
the HS-VIX model would have been shielded by 36.7% more capital than if they
had used the HS-GARCH model and 40.4% more than if they had used the HS
model. Given the results in Perignon and Smith (2010), that the HS model is
the most commonly used model by the banking sector, it is interesting to ponder
what would have happened during the �nancial crisis if banks had instead used
a model that would have required about 40% more risk capital7 .
During the �nancial crisis we can see that the MCR is actually higher then

the maximum loss of the position which because of limited liability is equal to
100$. This inconsistency in the Basel II rules is the result of the scaling factor
that does not take into account what the maximum loss of the position is.

5.2 Statistical results

All results from the statistical backtesting are presented in table 2. The test la-
beled unconditional coverage (LRUC) tries to answer the question if the models
provide a correct number of exceptions. All three models somewhat underesti-
mate the VaR at the 1 day horizon, particularly the HS-GARCH model. The
test for unconditional coverage can reject the HS-GARCH model as providing
correct coverage at the 5% signi�cance level for all �ve VaR level, the HS model
can be rejected at three VaR levels and the HS-VIX model at two VaR levels.
The 10 and 22 days forecast horizons seem much more di¢ cult and both the
HS and HS-GARCH models severely underestimate the risk with the number
of exceptions being two to three times too high. Both the HS and HS�GARCH
models can be rejected8 as providing a correct number of exceptions on all VaR
levels for both the 10 and 22 day forecast horizon. The HS-VIX model is better
and can be rejected on three VaR levels at the 10 days horizon and at two VaR
levels for the 22 days horizon. Even though the HS-VIX model overall achieved
the best unconditional coverage we would expect to see the largest bene�ts when
it comes to avoiding clustering of exceptions and this is indeed also the case.

[Insert table 2 about here.]

6This is one week after the subprime mortage lender New Century Financial Corporation
�les for Chapter 11.

7Most of the banks� risk capital is based on credit risk, the results presented here only
apply to market risk.

8All inference reported in the rest of the result discussion is based on a 5% signi�cance
level.
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The three tests LRind, LB1 and LB5 all look at clustering of exceptions
without taking any account of the actual number of exceptions. Looking at
these tests there are dramatic di¤erences between HS and HS-VIX. Taking all
three tests, �ve VaR levels and three forecasts horizons together the HS model
is rejected as providing independent exceptions on 27 of a maximum of 45 oc-
casions with most of the violations occurring at the 1 day forecast horizon. The
HS-VIX model can be rejected on 11 occasions and the HS-GARCH model fall
in between with 18 rejections. Looking at the combined results for the uncon-
ditional coverage and independence test we see that the HS-GARCH model is
better at capturing the dynamics in the data than at capturing the level. This
indicates that the � and � parameters are estimated with better precision than
the ! parameter in equation (4)
The LRcc and the Caviar tests jointly if a model can produce a correct

number of exceptions that are independently distributed over time. Both the
HS and HS-GARCH models can be rejected by both tests on all VaR levels and
forecast horizons with the single exception of the HS model at the 1 day forecast
horizon for 4% VaR. The HS-VIX model is rejected 14 times out of 30 (2 tests,
3 forecast horizons and 5 VaR levels).

6 Conclusion

The performance of the HS-GARCH model is markedly worse than in Hull and
White (1998). There are several reasons for this: i) the joint tests for a correct
number of independent exceptions were not available and hence not included in
the Hull and White (1998) study, ii) our data set is challenging since it contains
the �nancial crisis iii) we include 10 and 22 days forecast horizons, whereas Hull
and White (1998) only used 1 day forecasts. In view of this, the results that
the HS-VIX model is rejected 14 times out of 30 on the joint tests, whereas the
HS-GARCH and HS models are rejected 30 and 29 times out of 30 respectively,
must be considered a success for the new model.
The results presented in this paper have implications both for users of VaR

models, such as banks, and also for regulators. A �nancial institutions using the
HS-VIX model proposed in this paper would have approximately 40% higher
market induced risk capital than an otherwise identical institution using the
HS model during the time period leading up to the �nancial crises. The large
di¤erence between the HS-VIX and HS model is especially important in light of
the �nding in Perignon and Smith (2010) that the HS model is by far the most
used among commercial banks. A forward looking model, such as the HS-VIX,
could hence play an important role in crises mitigation.
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Figures and Tables

Table 1 - Descriptive statistics

SP500 VIX

Mean 5.14% 20.4

St dev 18.59% 8.31

Skewness -0.20 2.01

Kurtosis 11.84 10.11

�(1) -0.055 0.983

�(5) -0.031 0.942

�2(1) 0.205

�2(5) 0.326

This table presents descriptive statistics for the CBOE implied volatility index (VIX) and for

the percentage returns of the SP500. The time period is January 2, 1990 until August 30, 2010.

Mean and St dev is the annual percentage mean and standard deviation, � is the autocorrelation
and �2 is the autocorrelation of the squared series (unreported for VIX).
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